Chronic Recurrent Multifocal Osteomyelitis

Polly Ferguson, MD
Department of Pediatrics
University of Iowa Carver College of Medicine
Disclosures

- No financial conflicts
- Funding that has supported this work
 - NIH/NIAMS (R03, R21, R01)
 - Carver Trust
 - Children’s Miracle Network
 - Peregrine Charities
 - UI Department of Pediatrics
 - Care for Kids Research Fund
- All treatment modalities are used off-label
Illustrative Case

• 6 years old developed:
 – Fevers to 104 ~once weekly
 – Knee pain without objective changes
 – WBC 14,000; Plt 495K, ESR 99
 – Poor weight gain

• Work up revealed osteomyelitis in the left distal femur
 – Blood cultures negative
 – Treated for osteomyelitis with prolonged antibiotics without improvement
Illustrative Case

- 1 yr later extensive rash
 - Scalp, ears
- Bilateral knee, wrist, ankle & vertebral osteomyelitis
- No GI work-up, no skin biopsy
- Poor weight gain (22 kg at age 11 yrs)

http://www.lib.uiowa.edu/HARDIN/MD/psoriasispictures.html
Diagnosis = CRMO
Chronic recurrent multifocal osteomyelitis

- Recurrent
- Multifocal
- Involvement long bones and vertebra
- Association with psoriasis

- Atypical = failure to thrive, marked elevation in ESR
- Parents refused GI evaluation
- Rx NSAIDs, methotrexate
CRMO

- Autoinflammatory ds
- Occurs 1° in children
- ~ 2:1 F:M
- Bone pain +/- fever
- Multifocal osteomyelitis
 - 2 to 18 sites
- Recurrent
- X-rays: osteolytic lesions surrounded by sclerosis
- Cultures negative
- No response to Abx
- No validated diagnostic criteria
CRMO vs Growing Pains

- Can mimic growing pains
- Overlapping ages
 - Avg age dx ~9 years CRMO
- Bone pain, worse in the evening
 - Often wakes from sleep
 - Lower extremities
- +/- fever
- Exam can be normal
- Labs can be normal
- X-rays can be normal

- FAMILY HISTORY
 - MRI with STIR of painful site
Variable Severity
Associated Inflammatory Conditions

- Pustulosis palmoplantaris ~ 30%
- Psoriasis: up to 20%
- Intestinal inflammation in ~ 10 %
 - Crohn > ulcerative colitis > celiac
- Pyoderma Gangrenosum
- Sweet syndrome
- Congenital dyserythropoietic anemia
- Generalized pustulosis
- Acne
- Arthritis
- Spondyloarthropathy
- Still disease
- Vasculitis (Takayasu, ANCA positive vasculitis)
- JDM
- Uveitis
Psoriasis

- Plaque
- Flexural
- Seborrheic
- Guttate
- Pustular
- PPP
- Nail psoriasis

Roberson and Bowcock, Trends Genet. 26: 415, 2010
Pustule biopsy: intraepidermal pustule with numerous neutrophilic granulocytes; parakeratotic keratin, and perivascular round cell infiltrate.

Inflammatory Bowel Disease

- Bognar in 1998
- Many reports since that time
- Crohn > UC > celiac

Bazrafshan et al. J Ped Surg 2000
CRMO: w/u

- Normal WBC to mildly ↑ WBC
- Normal or elevated ESR &/or CRP
- Histology
 - PMN or mixed or sclerosis
- Plain films
 - osteolytic or sclerotic
 - Long bones, clavicle, spine, pelvis, mandible, small bones feet/hands
- Whole body imaging
 - MRI [STIR] superior to bone scan
Imaging
Radiographic resolution

Cassidy, Petty, Laxer and Lindsley, Textbook of Pediatric Rheumatology
Corresponding bone scans

2002

2007
Treatment

- **Empiric**
 - No FDA approved medications

- **NSAIDs**

- **DMARDs**
 - Methotrexate, sulfasalazine, both

- **Cytokine blocker**
 - TNF blockers, IL-1 blockers

- **Bisphosphonates**
 - Pamidronate, others
Etiology

- Innate immune system disorder with a genetic basis
 - Sporadic CRMO – locus 18q
 - Reported sibs and parent-sib pairs
 - 1 or 2° relative with psoriasis, IBD in 50%
 - Canine model (HOD)
 - Murine cmo
 - Majeed syndrome
 - Infant onset CRMO with pustulosis
Branches of the immune system

Innate immunity
- Oldest branch
- 1st line of defense
- Rapid and blunt
- Recognition of a limited number of molecular patterns
 - PAMPs
 - DAMPs

Adaptive immunity
- Sophisticated
- Capable of recognizing highly specific parts of pathogens
- Limitless repertoire
- Adapt to changes that a pathogen might make
- Has a memory
 - \(2\text{nd}\) response is faster
Branches of the immune system

Autoimmunity vs Autoinflammatory

• Autoimmunity
 – T cells, B cells & DC play prominent role
 – Loss of tolerance → reactivity to self antigens
 – Autoantibody production, self reactive T cells

• Autoinflammation
 – Relapsing and remitting bouts of systemic inflammation that is “seemingly unprovoked”
 • Cold, uric acid, silica, necrotic tissue, others
 – Absence of antigen specific T cells and in the absence of high titer autoantibodies
Hypertrophic Osteodystrophy (HOD)

- Large breed dogs
 - *Weimaraners*
 - *Irish Setters*

- Affects juveniles
 - 2 to 11 months of age

- Males > Females

- Clusters in litters and in breeds

- Gene defect unknown
Hypertrophic Osteodystrophy (HOD)

- Present with fever & ostalgia
- Warmth, swelling over site
- Pustulosis or IBD in some
- Osteolytic or sclerotic lesions
- Multifocal sterile osteomyelitis
 - Metaphyses of the long bones, vertebrae, mandible
 - Some lesions asymptomatic
- Treatment NSAIDs or corticosteroids
- Most resolve post-puberty
 - Some have persistent disease
Murine cmo
Murine cmo: autosomal recessive

Adapted from Ferguson et al. Bone 2006
Mutation in pstpip2
Exon 5: c.293T→C, L98P

Leucine to Proline at amino acid 98
Hematopoietic derived cells determine phenotype

Recipient

1100 Rads (split dose)

Irradiated mouse

Outcome at 3 months

Donor

T cell depleted bone marrow

<table>
<thead>
<tr>
<th>Donor</th>
<th>Recipient</th>
<th>N</th>
<th>Affected N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmo</td>
<td>BALB/cByJ</td>
<td>7</td>
<td>7 (100)</td>
</tr>
<tr>
<td>cmo</td>
<td>cmo</td>
<td>3</td>
<td>3 (100)</td>
</tr>
<tr>
<td>BALB/cByJ</td>
<td>cmo</td>
<td>5</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>
Phenotype independent of adaptive immune system

B6. Rag-/- × cmo
→
F1
→
F1

F2 cmo/cmo Rag -/-
• n = 9, 100% Affected
• Avg 48 days to 1st Sx

F2 cmo/cmo Rag +/-
• n = 9, 100% Affected
• Avg 46 days to 1st Sx
pstpip2

- Cytoskeletal associated protein
 - Regulation of actin-based cellular function
 - Important in cytoskeletal function in fission yeast

- Under- or over-expression in vitro
 - Changes in cell motility & phagocytic ability
 - Ability to rearrange the cytoskeleton to form filopodia, ruffles

- Expressed in monocytes, macrophages, Mac1+ granulocytes
Is cmo an IL-1 mediated disorder?
IL-1 receptor is required for disease
cmo mouse – Nlrp3 inflammasome independent disease

Cassel et al., PNAS. 2014
IL-1β driven bone inflammation is mediated via the neutrophil

Cassel et al., PNAS. 2014
cmo mice fed a high fat diet had normal paws and tails

Diet changes microbiome in cmo mouse

Majeed Syndrome

- Autosomal recessive
- Recurrent fevers
- Early onset CRMO
- Congenital dyserythropoietic anemia (CDA)
- Inflammatory dermatosis (Sweet syndrome)

Majeed et al., Eur J Pediatr 160:705
Majeed Syndrome insight into pathogenesis gained at the bedside

- 2 brothers
 - Recurrent fevers
 - pseudoparalysis (CRMO)
 - onset in 1st year of life
 - anemia
- LPIN 2 = 2 bp deletion
- c.1316_1317delCT = p.Ser439Trpfs*15
Treatment with IL-1 inhibitors = marked improvement

- Siblings with Majeed (CRMO, CDA)
 - homozygous c.1312_1313delCT; L438fs+16X
Majeed Syndrome
Response to IL-1 blockade

Majeed Syndrome
IL-1 mediated disorder

- Identification of \textit{LPIN2} as causative gene
- IL-1β specific blockade results in resolution of bone lesions and normalization of inflammatory markers
- Unclear of IL-1 blockade changes the dyserythropoiesis
- Can present as isolated CRMO
- Further evidence for the role of IL-1 in sterile osteomyelitis
Generalized pustulosis

- Generalized pustulosis and CRMO
- Early onset CRMO
- This patient with severe growth deformity & recurrent fractures

DIRA

- Neonatal onset
- Pustulosis
- Sterile multifocal osteomyelitis
- Marked acute phase response
- No improvement with antibiotics
- Improves with high dose steroids
- Empiric trial of anakinra → rapid and dramatic improvement
- Led to gene identification – international effort
DIRA : Cutaneous Manifestations
Photos from Raphaela Goldbach-Mansky
Radiographic findings
Genetics

- 6 families identified
- 9 affected children
- All parents are unaffected
- Pedigrees suggest autosomal recessive

Aksentijevich*, Masters*, Ferguson* et al. NEJM 360: 2426, 2009
Mutations in *IL1RN*

Aksentijevich*, Masters*, Ferguson* et al. NEJM 360: 2426, 2009

chr2 (q13)

Break point

113434601 → 113609824
Deficiency of IL-1 Receptor Antagonist (DIRA)

Response to Anakinra (IL-1Ra)

Improved laboratory studies with Rx
Translation of this basic research

- Murine and 2 monogenic human autoinflammatory bone disorders involve dysregulation of IL-1 pathway homeostasis.

- Is there a role for IL-1 inhibitors in the treatment of non-syndromic CRMO?

- Traditional treatment: NSAIDs, DMARD, TNF inhibition, bisphosphonates.
Stills & CRMO: Treatment with anakinra
After treatment failure with Pamidronate

10 months after 100 mg anakinra subcutaneously
[Rash, fever resolved within 24 hours of initiation of treatment]

Summary

• Scientific evidence points to the IL-1 pathway as the therapeutic target of choice for sterile bone inflammation
 – Yet there is limited information about response to IL-1 inhibitors in non-syndromic forms of CRMO

• Diet may play an important role in osteomyelitis
 – Important finding needs to be reproduced
 – Identification of the dietary component responsible for protecting the cmo mice needs to be identified

• Understanding the genetic basis of CRMO will likely shed light on the pathogenesis on its associated disorders (psoriasis, IBD, vasculitis, etc…)
Acknowledgements

University of Iowa
Hatem El-Shanti
Xinyu Bing
Alex Bassuk
Fayyaz Sutterwala
Susanne Cassel
Shu Wu
Allison Cox
Vinu Mahajan

Mohammed Vasef
Luis Ochoa
Tom Waldschmidt
Lorraine Tygrett
Annette Schlueter

Albert Einstein University
Richard Stanley, Violeta Chitu

The International Pediatric Rheumatology Community
Ron Laxer, Paul Dancy, Joost Frenkel, Annet van Royen-Kerkhoff, Ulf Tedgård, Rob Sundel
Hasan Majeed, Zakiya Al-Musawi, Khulood Al-Saad

NIH
Raphaela Goldbach-Mansky
Ivona Aksentijevich
Seth Masters
Dan Kastner
Elaine Remmers

NIH/NIAMS
Carver Trust
Children’s Miracle Network